A Partitioned Skyline LDL"

Factorization

Osni A. Marques

CERFACS Report TR/PA/93/53

A Partitioned Skyline LDL" Factorization

Osni A. Marques'

November 1993

Abstract

This report describes the implementation of a partitioned LDLT factorization for
matrices stored in a skyline pattern, which is often used in finite-element based codes.
The fill-in and memory requirements associated with such a storage scheme are usu-
ally reduced if some particular ordering is applied to number the nodes of the mesh.
The factorization is implemented in a bottom-looking fashion, by copying variables
from the skyline storage to temporary arrays, performing elimination operations, and
copying them back to the skyline storage. This strategy apparently introduces some
communication overhead, but allows adequate data management on computers with a
hierarchical memory and the use of high level BLAS kernels in the factorization process.
The performance of the implementation is examined and compared with that of a Level
1 BLAS based code, on different computers, with different partitionings. The study
cases correspond to medium size matrices with dimensions ranging from 8592 to 11948.

TCERFACS, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, 42 av. G.
Coriolis, 31057 Toulouse Cedex, France, e-mail: marques@cerfacs.fr

1 Introduction

The solution of a square system of real linear equations Az = b of dimension n is a key point
in many scientific and engineering applications. If A can be decomposed into the product
LU, where L is a lower triangular matrix and U is an upper triangular matrix, z can be
determined from Ly = b and Uz = y. In reality, such a decomposition is usually performed
on a matrix PA (so that Ly = Pb), where P represents the permutation introduced by a
pivoting strategy, intended for the reduction of errors in the solution [11, 16]. Particular
cases are U = LT when A is symmetric positive definite (Cholesky factorization), and
U= DLT , when A is symmetric indefinite (Crout or Doolittle factorizations), where D
is a direct sum of 1x1 and 2x2 pivot blocks and L is a lower unit triangular matrix.
Basically, L and U are evaluated by three nested loops, whose arrangement (column or row
oriented) can strongly influence the computational performance of the process. Robert and
Sguazzero [24] and Dongarra et al. [10], for instance, studied different ways of doing that
nesting for dense matrices. In any case, the factorization phase is more time consuming
than a later evaluation of z. All the same, a partitioning or blocking is usually applied to
matrix calculations, so as to profit from the architecture of current modern computers. This
strategy becomes very important as n increases and requires the restructuring of several
techniques in linear algebra (see [2] and [3]).

The partitioned or blocked factorization of a matrix A allows efficient data management on
computers with a hierarchical memory. If parallelism is available, operations with different
submatrices can be assigned to the existing processors, or the performance can be exploited
within a block calculation by using tuned implementations of basic linear algebra (BLAS)
kernels. The first possibility is described by Louter-Nool [19], for instance, for the Cholesky
factorization of dense matrices, through a technique based on a data dependency graph that
schedules calls to Level 3 (matrix-matrix multiplication) BLAS to different processors of
shared memory computers. On the other hand, Laszewski et al. [25] analyse some column
oriented LU factorizations of dense matrices on distributed memory computers, showing
that the choice of an implementation for a given architecture is dictated not only by the
number of processors but also by the problem size. Malard [21] adopts a different approach
for the partitioned LU and Cholesky methods, focusing on different communication strate-
gies among the processors of a distributed memory machine (pipelined and synchronous fac-
torization) with Level 3 BLAS based implementations. Conversely, the improvement within
each block is examined by Daydé and Duff [7], by means of different Level 2 (matrix-vector
multiplication) and Level 3 BLAS based procedures on vector/parallel supercomputers.

It should be noted that after a matrix has been split into submatrices, scalar operations can
be reordered into matrix operations or transformed into matrix operations (with b/c changing
to BC~! for instance). In fact, some authors use either partitioning or blocking to refer
to reordered operations [19, 3, 25]. However, this terminology is somewhat confusing, as
the techniques are not equivalent and can lead to different numerical properties. Demmel
et al. [8] analysed the factorization A = LU, where the diagonal blocks of L are identity
matrices and the diagonal blocks of U are generally not triangular, showing that it is
stable only if A is block dominant by columns. The aforementioned authors associate
“partitioning” with reordering operations and “blocking” with transforming operations. In
this report we adopt the same idea, therefore calling our implementation a partitioned one.

During the factorization process, the blocks of a dense matrix A can be accessed directly,
while for sparse matrices some indirect addressing is required. This strategy apparently
introduces a communication overhead, but data is kept in fast memory as much as possible
(reducing traffic to and from the slower memory). When combined with matrix-matrix mul-
tiplication operations, this leads to a high performance on many computers. For example,
some issues related to the implementation of a sparse multifrontal method using Level 3
BLAS on a virtual shared memory machine are given by Amestoy et al. in [1]. Furthermore,
Zubair and Ghose [27] discuss different partitionings for a sparse Cholesky factorization on
a distributed memory parallel machine, Ng and Peyton [22] propose enhancements for a
partitioned sparse Cholesky and the multifrontal scheme, and Van der Stappen et al. [9]
study a sparse LU decomposition strategy on a network of transputers.

In some applications, for example from 2-dimensional finite-element analysis, A is stored
in profile or skyline form [4, 14, 17, 26]. For each column of a symmetric matrix, such a
scheme stores from the first non-zero element to the diagonal element (profile in) or from the
diagonal element to the last non-zero (diagonal out). All column (or row) elements from
the first non-zero to the last non-zero are stored for an unsymmetric matrix. The zeros
inside the profile are also stored in all circumstances, since they generally change during the
factorization process, in contrast to the zeros outside. The concentration of the nonzeros
around the main diagonal depends on the way the discretization is performed and on the
formulation representing the physical conection among the nodes of the finite-element mesh.
However, it is usually possible to decrease the bandwidth of the matrix through a reordering
technique, like reverse Cuthill-McKee [15]. Therefore, if we consider the upper triangle of
the small symmetric matrix

e o O O

e O O O

e o0 OO e
e 06 O OO O

where @ means a nonzero, it can be stored in a one-dimensional array as
array = | a11 dag22 @13 G223 Q33 A34 Q44 -°* Aee Q47 dA57 Gg7 A77
with the addresses of the diagonals in array given by
diagonal = [125 7 10 16 20]
so that any element of A in the profile is mapped on array by
a; ; = array(diagonal(j)+ 1 — j)

It should be noted that a similar storage strategy can be also defined for the rows using
the lower triangle of the matrix. Such a scheme might be appropriate for compact formats,
column-oriented stored matrices, as those belonging to the Harwell-Boeing sparse matrix
collection [12].

Table 1: LDLT factorization

forj=1,2,..n

i—1
wj = aj— Y lpuwgg, 1<i<j—1
k=1

L =wij/di, 1<i<7-1

7—1
djj = aj; — D linux;
k=1

end for

Some techniques have been developed for dealing with the partitioned or blocked factoriza-
tion of matrices stored in a skyline fashion. Let us define ijk as being the indices of the loops
that determine the factors L and D, where ¢ denotes the matrix row, j the matrix column
and k the elimination step. Farhat [13], for example, modified the LD L™ decomposition by

(k)

using at step k& a serial vectorized ijk arrangement to factor a d x d diagonal block A,/ .
Then, a jki arrangement to concurrently reduce the rows k£ to k+d—1 with Ag;), and finally
a kji arrangement for a parallel/vector reduction of the rows with indices from k+d (Gauss
elimination). He also used an auxiliary integer array for defining the effective length of
each row, obtaining a better computational performance than a variable bandwidth based
technique. On the other hand, Lozupone et al. [20] proposed a partitioned Cholesky scheme
with the utilization of high level BLAS kernels in the factorization process. In both imple-
mentations, variables are copied to temporary arrays and operations can be wasted even in
a regular profile, since zeros can be artificially introduced. However, the cost of such wasted
operations is usually overcome by the high performance reached on the target computers.

In this paper we consider the factorization LDLT, where an element of A is related to the
elements of I and D by

k3
a;; = Z Lipdirl s
k=1
for 1 < j < 4. Defining u;; = d;;l;; for simplification, the algorithm for computing L and D
is given in Table 1. However, with the use of a temporary scalar variable, the operations
described in that table can be rearranged, so that A is overwritten by its own decomposition
in the lower or upper triangle. The objective here is to analyse a partitioned factorization
for matrices stored in a skyline way, extending the implementation developed by Lozupone
et al. [20] to the operations shown in Table 1, for utilization in a block Lanczos based eigen-
solver. The matrix A can be indefinite in some cases? but the conditioning of the system can
be estimated through the approximate eigenvalue spectrum provided by the eigensolver. In
addition, as shown by Parlett [23, pages 63-65], an ill-conditioned system may be useful in

Tt should be noted that the inertia of A, the number of eigenvalues of A less, equal or greater than zero,
can be recovered from D.

the eigenvalue problem, in the sense that the errors introduced will have strong eigenvector
components. Therefore, as a first approach, we assume that an indefinite matrix can be
factorized only with diagonal pivoting (without rows and columns interchanges), so as to
preserve the skyline pattern. In the next section we describe the technique and then examine
and compare its performance to that of a Level 1 (vector-vector and vector-scalar multipli-
cation) BLAS based code, by means of matrices with medium size dimensions (ranging from
8592 to 11948), using different partitionings. The experiments are performed on the high
performance workstation IBM Risc 6000/950, and on the shared memory multiprocessors
Convex €220 and Alliant FX/80. Finally, from the results obtained, some conclusions are
listed, as well as suggestions for continuation of the present work.

2 Partitioned Strategy

The LDLT factorization of a full matrix partitioned into 3x3 submatrices is defined as

follows:
Ag A Aig Lyiy Uwg Ui Ui
Agq Agg Az | = | Lag Lap Uso Uz
Azq Azy Az L3y Lz L33 Us3
Ly Uiy Li1Uy 2 Li U3
= | LaaUiqg LoiUia+ LaoUss LoaUiz+ Ly oUs 3
L31Uin LaUio+ LagUso L3iUiz+ L3aUsz+ L3zUss

where A;; = A}:Z» and, for simplification, U; ; = Di,iL%ﬂ the submatrices L and D can be

overwritten on A and obtained from the following column oriented variants, for 7 > ¢ (see
[20] and [24] for details),

left-looking: A;; is updated with the triangle already factorized to its left.
top-looking: A; ; is updated with the submatrices already factorized above it.
bottom-looking: A; ; is factorized and used to update submatrices below it.

All these variants can be expressed in terms of BLAS operations, namely by a combination of
_GEMM and _TRSM, where the underscore denotes an arbitrary arithmetic precision. The
factorization of a diagonal submatrix is explained latter. If the bottom-looking approach is
taken into account, the sequence of operations involving these kernels is

A171 — Ll,l and D171

Uyg — Ll_&A172 CALL _TRSM (‘left’, ‘lower’, ‘notranspose’, ‘unit’,...)
Ly — UL,Dy}

Agg e— Ago— Lo Us CALL _.GEMM (‘notranspose’, ‘notranspose’,...)
Uyz — Ll_éALg CALL _TRSM (‘left’, ‘lower’, ‘notranspose’, ‘unit’,...)
Agg —— Ag3— Lo Us3 CALL _.GEMM (‘notranspose’, ‘notranspose’,...)
Lsy — U{3D7;

Azg —— A33— L31Us 3 CALL _.GEMM (‘notranspose’, ‘notranspose’,...)

A272 — L272 and D272

However, in order to perform similar operations for a matrix stored in skyline form, the
sequence above has to be rearranged and performed with auxiliary arrays. We define S
and R, with dimensions nrows X nrows and nrows X ncols, respectively, where ncols is at
least equal to the semibandwidth of A. First, a diagonal submatrix A;; is copied into S,
as shown in Figure 1, and factorized. The diagonal of S holds D, ;, and its lower triangle
L;; (or alternatively LZZ» in the upper triangle). Then, the nondiagonal submatrix, A; 41,
is copied into R, as shown in Figure 2, and premultiplied by the inverse of L; ;, leading to
Uiit1. Note that zeros can be artificially introduced in R, and some arithmetic wasted,
but this is negligible when the elements of A are concentrated around the diagonal. Now,
the next diagonal submatrix, A;41 41, in the “shadow” of R, is updated as indicated in
Figure 3. This updating, however, requires both L;4q; and U; ;41 (and U; ;41 = Di,iLzT-l-l,ia
which does not happen in the Cholesky factorization). This situation is handled by first
copying U, ;41, stored in R, to the profile, and then multiplying R by D;il, obtaining
LZT+1,Z'- Instead of calling _GEMM for a matrix-matrix multiplication in the following phase,
successive calls to _.GEMYV are used for matrix-vector operations, since the matrix is stored
in R and the vectors are accessed directly into the array storing A. After this step, the
information contained in R is copied again into the profile. Therefore, an additional transfer
from R to the profile is required in the present implementation of the LD LT factorization,
when compared with the Cholesky one proposed by Lozupone et al. [20]. All operations are
summarized in Table 2, where nb denotes the number of diagonal blocks in the partitioning.

Computational Details

The factorization of a diagonal block in step a.2, can be performed by rank-one updating
submatrices of S. Assuming first that the leading m x m submatrix of S has been factorized,
1<m < nrows, and the m+1 to nrows elements of the m-th column have been scaled by
the inverse of s,, ,,, (the diagonal coefficient, if different from zero) yielding s,,, the bottom
right submatrix, S, is updated by

S—§-— $m7msms£
so that S will hold D;; and L;; when m = nrows — 1. Note that the operation above is a
Level 2 BLAS type procedure (_.SYR), which is applied only to the lower (or alternatively
upper) triangle of S.

In practical applications, it is likely that ncols will be less than the bandwidth of A or less
than the maximum column index of a bunch of rows in the skyline pattern. In addition,
the choice of efficient values for ncols and nrows depends on the computer architecture.
On computers with a hierarchical memory, for instance, they should allow an adequate use
of the available cache. Therefore, in order to deal with all possible cases, the updating
of nondiagonal submatrices and their shadows have also to be partitioned as indicated in
Figure 4. This partitioning is represented by the loops on the non diagonals and trailing
submatrices in steps b and c, respectively. Considering that the ¢-th diagonal block cor-
responds to the rows (or columns) with indices from firstrow to lastrow, we can gather
in R, for the “TRSM phase (step b.1), only those columns in the profile whose coefficients
satisfy these limits. The indices of such columns are kept in an auxiliary integer array,
index, which is also used for scattering the columns back into the skyline storage. Using

the notation of the first section, the minimum row index of the j-th column in the profile
is given by j—(diagonal(j)— diagonal(j — 1))+1, j > 1. Moreover, to update the trailing
submatrices, we can load in R only the blocks of A that are not identically zero, which can
be obtained by examining index again. After the scaling of R by Di_il, it is possible to
determine the effective length of each column for the . GEMYV phase in étep c.3

S T
u; — u; — R u;

where 1; denotes the elements to be updated in the j-th column. Figures 5, 6, and 7
illustrate different updating cases. In those figures, note the positions of u;, u; and, for
clarity, the transpose of the submatrix R. The higher fill-in density inside each R indicates
the portion to be considered in the multiplication by u;, which is influenced by j, ncols,
and also the piece of A stored in R.

Table 2: Partitioned Skyline LDLT Factorization

for i=1,2,...nb

a) factorize the diagonal submatrix
a.1) copy the diagonal submatrix A;; into S
a.2) factorize S
a.3) copy D;; and L;; into the profile

b) loop on the non diagonal submatrices
b.1) copy a non diagonal submatrix into R
b.2) update R using L;; (_TRSM phase)
b.3) copy the columns of R into the profile

¢) loop on the trailing submatrices
c.1) copy a non diagonal submatrix into R
c.2) update R using D;Z»l
c.3) update the trailing submatrix (_.GEMYV phase)
c.4)

copy the columns of R into the profile

end for;

Figure 1: Diagonal submatrix copied into S

7
l wasted arithmetic
R

Figure 2: Nondiagonal submatrix copied into R

7

J_H

Figure 3: Updating the next diagonal submatrix

Figure 4: Split updating of trailing submatrices

j-th column

RT } elements to be updated

Figure 5: Updating limited by the diagonal

0 be updated

Figure 6: Updating limited by ncols

j-th colum|

je updated

Figure 7: Updating limited by the diagonal

3 Study Cases

In this section we apply the partitioned technique described to the decomposition of ma-
trices with dimensions ranging from 8592 to 11948. The characteristics of these matrices
(already reordered) are given in Table 3, where n corresponds to the dimension, nz to the
number of nonzeros (upper triangle, including the diagonal), nzp to the size of the profile
(one-dimensional array) required for storing the nonzeros in skyline form, and bw to the
semibandwidth. The first matrix comes from a computational chemistry application and
corresponds to the product M~Y2V2EM =12 where E is the potential energy and M is
the diagonal matrix of the atomic masses, for the protein arabinose. The other two belong
to the Harwell-Boeing matrix collection [12] and are associated with finite-element analyses
in structural engineering. The patterns of the three matrices (only the upper triangle) are
shown in Figures 8, 9 and 10. The experiments were carried on using double precision
arithmetic, on the high performance IBM Risc 6000/950 workstation, and on the Convex
C220 and Alliant FX/80 shared memory multiprocessors, using different partitionings. In
addition, the performance of the present implementation was measured through the relation
t,/t, where t, is the required user CPU time for the partitioned strategy and ¢ the user CPU
time for a Level 1 BLAS based factorization, i.e., a column oriented implementation of the
operations shown in Table 1 using _DOT and _AXPY kernels [16]. All the BLAS kernels
used were taken from the computer scientific libraries, without any extra code tuning.

Table 3: Study cases characteristics

matrix n nz nzp bw
arabinose 8592 1161360 8089635 1395
besstk17 10794 219812 2848395 522
besstk18 11948 80519 5120570 1244

10

IBM Risc 6000/950. The IBM Risc 6000/950 is a super-scalar machine with a peak per-
formance of 83.2 Mflops. It has a high speed Data Cache of 64 Kbytes which is transparent
to the code, but can play an important role in the computational performance. Here, one
of the goals is to use every array element brought into the cache as much as possible, before
it is flushed out by more data [5]. Moreover, some of the Level 3 BLAS kernels in the IBM
library are already well tuned. Therefore, the partitioned strategy works extremely well, as
can be seen in Tables 4, 5 and 6, for arabinose, besstk17 and besstk18, respectively, with
nrows equal to 32 and 64 and ncols greater than 64. These dimensions allow good cache
usage and it is not likely that bigger values would give as good a performance.

Convex C220. The Convex C220 is a vector parallel computer in which up to 128 pairs
of arrays elements are used for computations with a single machine instruction by each
vector register [6]. Using a configuration with one processor, the Level 1 BLAS based
factorization led to better computational performance than the partitionings examined for
the matrix arabinose, as can be seen in Table 7. However, a slight improvement is verified
by increasing nrows. In addition, since the Convex C220 has no cache memory, it appears
that large values of nrows and ncols would be required to reach a good performance using
the high level BLAS implementations in the Convex scientific library.

Alliant FX/80. The Alliant FX/80 is a vector multiprocessor machine with a 512 Kbytes
cache memory and 23.5 Mflops peak performance per processor. A configuration with 8
processors has been used, therefore with a theoretical peak performance of 188 Mflops.
Again, the partitioned implementation is favoured by the cache memory and the perfor-
mance of the high level BLAS, as can be seen in Tables 8 and 9, for besstk17 and besstk18,
respectively. However, those values of nrows and ncols do not make full use of the Alliant
cache and some additional experiments should be performed for larger matrices.

Table 4: Performance for arabinose on the IBM Risc 6000/950, ¢, /t

nrows ncols
32 64 128
32 0.91 0.73 0.68
64 - 0.63 0.66
128 - - 0.74

Table 5: Performance for besstk17 on the IBM Risc 6000/950, t,/t

nrows ncols
16 32 64 128
16 1.07 0.83 0.70 0.67

32 - 0.67 0.58 0.57
64 - - 0.53 0.54
128 - - - 0.67

11

Table 6: Performance for besstk18 on the IBM Risc 6000/950, t,/t

nrows ncols
32 64 128
32 0.98 0.79 0.75
64 0.68 0.71
128 - - 0.84

Table 7: Performance for arabinose on the Convex €220, t,/t

nrows ncols
32 64 128
32 3.11 3.12 3.13
64 3.01 3.04
128 2.95

Table 8: Performance for besstk17 on the Alliant FX/80, ¢,/t

nrows ncols
32 64 128
32 0.34 0.28 0.25

64 - 019 o0.17
128 - 0.15

Table 9: Performance for besstk18 on the Alliant FX/80, ¢,/t

nrows ncols
32 64 128
32 0.68 0.59 0.54
64 0.48 0.46
128 - - 0.43

12

Figure 8: Pattern of the matrix arabinose

Figure 9: Pattern of the matrix besstk17

Figure 10: Pattern of the matrix besstk18

13

4 Conclusions

This report describes a partitioned implementation for the LDLT factorization of ma-
trices stored in a skyline pattern. Such a storage scheme is particularly interesting for
2-dimensional finite-element analyses, assuming some reordering can be performed on the
matrix (or equivalently on the numbering of the nodes of the mesh) to reduce the bandwidth
and therefore the fill-in during the factorization process. The objective was to compare the
performance of the partitioned implementation with that of the traditional _-DOT/_AXPY
based decomposition. It should be noted that no special code restructuring or optimiza-
tion was used to obtain the peak performance of both implementations. The combination
of a temporary data storage scheme and the use of the high level BLAS kernels led to a
performance improvement on computer architectures with cache memory, as the IBM Risc
6000/950 and the Alliant FX/80. However, the Level 1 implementation performed best on
the vector computer Convex C220, probably due to the way the kernels were tuned in the
available scientific library. In this case, high level BLAS specifically tuned for reasonable
values of nrows and ncols should be used.

On the other hand, additional tests must be performed for different dimensions of the
auxiliary arrays when the cache memory is relatively large and shared by many processors,
as is the case of the Alliant FX/80. An adaptive strategy could be also tried for defining
such dimensions based on particular characteristics of the matrix, like the bandwidth or
an irregular profile. The most challenging task is the development of a pivotal strategy
that keeps some characteristics of the matrix. Some progress has already been reached for
special banded matrices (with a small number of negative eigenvalues), as shown by Jones
and Patrick [18], for example. However, column and row interchanges certainly alter the
profile, and the goal should be the development of a technique to control such modifications.

References

[1] P. R. Amestoy, M. J. Daydé, 1. S. Duff, and P. Morére. Linear Algebra Calculations
on a Virtual Shared Memory Computer. Technical Report TR/PA/92/89, CERFACS,
Toulouse, France, 1992.

[2] E. Anderson, Z. Bai, C. Bischof, J. W. Demmel, J. J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK: A portable
linear algebra library for high-performance computers. Technical Report CS-90-105,
University of Tennesse, Knoxville, USA, 1990.

[3] E. Anderson, Z. Bai, C. Bischof, J. W. Demmel, J. J. Dongarra, J. Du Croz, A. Green-
baum, 5. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK User’s Guide.
SIAM, Philadelphia, USA, 1992.

[4] K.-J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, En-
glewood Cliffs, USA, 1982.

[5] R. Bell. IBM Risc System/6000 NIC Tuning Guide for Fortran and C. IBM United
Kingdom, 1991. doc. GG24-3611-01.

14

[6] Convex Computer Corporation, Richardson, USA. Convex Fortran Optimization
Guide. Second edition, 1990.

[7] M. J. Daydé and I. S. Duff. Level 3 BLAS in LU Factorization on the Cray 2, ETA-10P
and IBM 3090-200/VF. The Int. J. of Supercomputer Applications, 3:39-70, 1989.

[8] J. W. Demmel, N. J. Higham, and R. S. Schreiber. Block LU Factorization. Technical
Report 207, Dept. of Mathematics, University of Manchester, Manchester, England,
1992.

[9] A. F. Van der Stappen, R. H. Bisseling, and J. G. G. Van der Vorst. Parallel Sparse
LU Decomposition on a Mesh Network of Transputers. STAM J. Matriz Anal. Appl.,
14:853-879, 1993.

[10] J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing Linear Algebra Algo-
rithms for Dense Matrices on a Vector Pipeline Machine. STAM Review, 12:91-112,
1984.

[11] 1. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Claren-
don Press, Oxford, England, 1986.

[12] 1. S. Duff, R. G. Grimes, and J. G. Lewis. User’s Guide for the Harwell-Boeing Sparse
Matrix Collection (Release I). Technical Report TR/PA/92/86, CERFACS, Toulouse,
France, 1992.

[13] C. Farhat. Redesigning the Skyline Solver for Parallel/Vector Supercomputers. Int. .J.
of High Speed Comp., 2:223-238, 1990.

[14] C. A. Felippa. Solution of Linear Equations with Skyline-stored Symmetric Matrix.
Computers & Structures, 5:13-29, 1974.

[15] A. George and J. W. H. Liu. Computer Solution of Large Sparse Symmeltric Positive
Definite Systems. Prentice Hall, Englewood Cliffs, USA, 1981.

[16] G. H. Golub and C. F. Van Loan. Matriz Computations. The Johns Hopkins University
Press, Baltimore, USA, third edition, 1996.

[17] T. J. R. Hughes. The Finite Element Method. Prentice Hall International Editions,
1987.

[18] M. T. Jones and M. L. Patrick. Bunch-Kaufmann Factorization for Real Symmetric
Indefinite Banded Matrices. SIAM J. Matriz Anal. Appl., 14:553-559, 1993.

[19] M. Louter-Nool. Block-Cholesky for Parallel Processing. Technical Report NM-R9023,
Centre for Mathematics and Computer Science, Amsterdam, The Netherlands, 1990.

[20] D. F. Lozupone, P. Mayes, and G. Radicati di Brozolo. Skyline Cholesky Factorization
Using Level 3 BLLAS. Technical Report ICE-0037, IBM ECSEC, Rome, Italy, 1990.

[21] J. Malard. Block Solvers for Dense Linear Systems on Local Memory Multiprocessors.
PhD thesis, School of Computer Science, McGill University, Montreal, Canada, 1992.

[22] E. G. Ng and B. W. Peyton. Block Sparse Cholesky Algorithms on Advanced Unipro-
cessor Computers. SIAM J. Sci. Comput., 14:1034-1056, 1993.

15

[23] B. N. Parlett. The Symmetric Figenvalue Problem. SIAM (Classics in Applied Math-
ematics), Philadelphia, USA, 1998.

[24] Y. Robert and P. Sguazzero. The LU Decomposition Algorithm and its Efficient FOR-
TRAN Implementation on the IBM 3090 Vector Multiprocessor. Technical Report
ICE-0006, IBM ECSEC, Rome, Italy, 1987.

[25] G. von Laszewski, M. Parashar, A. G. Mohamed, and G. C. Fox. On the Parallelization
of Blocked LU Factorization Algorithms on Distributed Memory Architectures. In
Supercomputing’92, pages 170-179, Los Alamitos, USA, 1992. IEEE Computer Society
Press.

[26] O. C. Zienkiewikz and R. L. Taylor. The Finite Element Method, volume 1 (Basic
Formulation and Linear Problems), 2 (Solid and Fluid Mechanics, Dynamics and Non-
Linearity). McGraw Hill International Editions, fourth edition, 1989.

[27] M. Zubair and M. Ghose. A Performance Study of Sparse Cholesky Factorization on
INTEL iPSC/860. Technical Report 92-13, ICASE, Hampton, USA, 1992.

16

